1

People and ecosystems

Understanding of the links between coral reef ecosystems, the goods and services they provide to people, and the wellbeing of human societies.

2

Ecosystem dynamics: past, present and future

Examining the multi-scale dynamics of reefs, from population dynamics to macroevolution

3

Responding to a changing world

Advancing the fundamental understanding of the key processes underpinning reef resilience.

Coral Bleaching

Coral Bleaching

Coral Reef Studies

From 2005 to 2022, the main node of the ARC Centre of Excellence for Coral Reef Studies was headquartered at James Cook University in Townsville, Queensland (Australia)

Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image
Menu
YouTube
Event

Is ocean acidification a threat to marine fishes?

When

12.00pm, Thursday 22 September 2011

location
Townsville - Sir George Fisher Building Conference Room #114 (DB32 upstairs)
Presenter
Philip Munday, ARC Centre of Excellence for Coral Reef Studies and the School of Marine and Tropical Biology, James Cook University

Professor Philip Munday has broad interests in the biology and ecology of marine fishes. His research program focuses on understanding and predicting the impacts of climate change on populations and communities of coral reef fishes, both directly through changes in the physical environment and indirectly through effects on coral reef habitat. Using laboratory and field-based experiments he is investigating the effects of increased temperature and ocean acidification on reef fish populations and testing their capacity for acclimation and adaptation to a rapidly changing environment. He has published over 100 papers in coral reef ecology, including major reviews and research papers on climate change impacts. Philip is a Professorial Research Fellow and ARC QEII Fellow at the ARC Centre of Excellence for Coral Reef Studies, and the School of Marine and Tropical Biology, at James Cook University.

Abstract:

Ocean acidification, caused by the uptake of additional CO2 from the atmosphere, will have significant impacts on calcifying marine organisms; but how will rising CO2 levels affect other marine species? In this talk I examine the effects of elevated CO2 on the biology and ecology of coral reef fishes. Experimental results indicate that life history traits of reef fishes are remarkably tolerant to CO2 levels that could occur in the ocean by the end of this century, however, sensory systems and behaviour are severely affected. Olfaction, hearing, learning, activity levels and lateralization are all impaired in reef fish larvae reared at near-future CO2 levels, leading to changes in settlement patterns and higher rates of mortality from predation in natural coral-reef habitat. The underlying mechanism appears to be a systemic effect of elevated CO2 on cognitive function and decision making in marine fish.  Predicting the consequences of these changes, and the potential for adaptation, are critical for understanding the impacts of climate change in marine ecosystems.

Seminars

More
Australian Research Council Pandora

Partner Research Institutions

Partner Partner Partner Partner
Coral Reef Studies