DNA reveals the past and future of coral reefs
New DNA techniques are being used to understand how coral reacted to the end of the last ice age in order to better predict how they will cope with current changes to the climate. James Cook Univer
From 2005 to 2022, the main node of the ARC Centre of Excellence for Coral Reef Studies was headquartered at James Cook University in Townsville, Queensland (Australia)
Abstract: Current conservation goals for reef-building corals under climate change involve boosting desirable traits like heat tolerance and fast growth in natural and restored coral populations. This may be accomplished through a number of interventions including symbiotic manipulation, selective propagation and breeding, and assisted gene flow. However, the success of these interventions depends on understanding how the desired traits are controlled by the coral host, its algal symbionts, and the environment (i.e., genotype by genotype by environment interactions). Here I will describe research aimed at characterizing these interactions in the growth and thermal tolerance in several Caribbean coral species through both laboratory and field approaches. In the lab, variability in heat tolerance is linked to both the identity of symbionts, which modulate host gene expression, as well as the genetics of the coral host. In the field, large-scale reciprocal transplant experiments are revealing genotype by environment interactions in coral growth, and new approaches to quantifying thermal tolerance at the individual level are being used to identify high-performing and resilient genotypes across whole populations. This phenotypic catalog will help determine the genomic basis of key performance traits, and guide effective intervention strategies for coral conservation under climate change.
Biography: Dr. Cunning started at the John G. Shedd Aquarium in 2018 after working extensively at the University of Miami and the Hawaiʻi Institute of Marine Biology. His research has been focused on quantitative analyses of coral symbioses ranging from genetic identification to gene expression, genomics, and bioenergetic modeling.
At Shedd, Cunning leads a broad program on coral reef conservation research involving extensive fieldwork on the R/V Coral Reef II, molecular genetic work in Shedd’s microbial ecology lab, and engagement with the aquarium’s large and diverse audiences.
New DNA techniques are being used to understand how coral reacted to the end of the last ice age in order to better predict how they will cope with current changes to the climate. James Cook Univer
A new study on the effects of climate change in five tropical countries has found fisheries are in more trouble than agriculture, and poor people are in the most danger. Distinguished Profess
James Cook University researchers have found brightly coloured fish are becoming increasingly rare as coral declines, with the phenomenon likely to get worse in the future. Christopher Hemingson, a
Researchers working with stakeholders in the Great Barrier Reef region have come up with ideas on how groups responsible for looking after the reef can operate more effectively when the next bleaching
Abstract: As marine species adapt to climate change, their heat tolerance will likely be under strong selection. Individual variation in heat tolerance and its heritability underpin the potential fo
Abstract: The Reef Ecology Lab in KAUST’s Red Sea Research Center explores many aspects of movement ecology of marine organisms, ranging from adult migrations to intergenerational larval dispersal
Abstract: Macroalgal meadows are a prominent, yet often maligned component of the tropical seascape. Our work at Ningaloo reef in WA demonstrate that canopy forming macroalgae provide habitat for ad
Abstract: Sharks are generally perceived as strong and fearsome animals. With fossils dating back at least 420 million years, sharks are not only majestic top predators but they also outlived dinosa
Abstract: Connectivity plays a vital role in many ecosystems through its effects on fundamental ecological and evolutionary processes. Its consequences for populations and metapopulations have been
Abstract: Evolution of many eukaryotic organisms is affected by interactions with microbes. Microbial symbioses can ultimately reflect host’s diet, habitat range, and even body shape. However, how
Abstract: The past few years have seen unprecedented coral bleaching and mortality on the Great Barrier Reef (GBR) but the consequences of this on biodiversity are not yet known. This talk will expl