DNA reveals the past and future of coral reefs
New DNA techniques are being used to understand how coral reacted to the end of the last ice age in order to better predict how they will cope with current changes to the climate. James Cook Univer
From 2005 to 2022, the main node of the ARC Centre of Excellence for Coral Reef Studies was headquartered at James Cook University in Townsville, Queensland (Australia)
Abstract 1: Environmental stress is often met with changes in metabolism to compensate for increased energetic demand. The extent and magnitude of these changes may underpin the success or failure of species to adapt in various environments. Lipid metabolism, in particular is a fundamental component of most living organisms and plays a role in energy homeostasis, molecular signalling, and cell structure. Lipids are a primary form of energy storage for most vertebrates and also fuel the majority of aerobic ATP production to support ATP consuming reactions. The evolution and regulation of lipid metabolism will be discussed with a particular emphasis on development and coping with physiological stresses such as starvation and exercise in a variety of fish species. I propose that fish have a unique metabolic plasticity over other vertebrates, which allows them to thrive under diverse environmental conditions
Biography: Andrea completed her PhD in Comparative Physiology in 2010 at McMaster University, Canada on the evolution and regulation of mitochondrial lipid oxidation. Using a diverse range of fish and mammalian species she identified key regulatory points in the lipid metabolism pathway and how they transformed under a variety of physiological and environmental stresses to enable maximal energetic efficiency. Andrea is now a postdoctoral fellow at the University of Cambridge, UK, and holds a Natural Science and Engineering Research Council of Canada (NSERC) Postdoctoral Fellowship. Her current research focuses on mitochondrial metabolism and fuel selection during hypoxia in cardiac and skeletal muscle. Andrea’s research uses a range of techniques; from whole animal down to molecular biology and encompasses the fields of physiology, ecology, evolution and health and disease.
Abstract 2: In aquatic species, the heart is extremely temperature sensitive, and often the critical temperature for heart failure (HF) is only a few degrees above species’ upper habitat temperatures (Tmax). Predictions of climate change mediated rises in ocean temperatures also suggest that ectothermic hearts may constrain many marine species distributions. HF at high temperature may result from disrupted ion transport, oxygen and substrate supply disruptions to and from energy supplying mitochondria in cardiac cells. My PhD study targets mitochondria, as damaged mitochondria may increase their reactive species production and trigger apoptosis, or they may fail to produce enough ATP to sustain a heartbeat. Using an endemic New Zealand fish species, Notolabrus celidotus, or “the Spotty”, we assessed cardiac function and determined the THF. We then used high-resolution respirometers to explore temperature-mediated changes in cardiac mitochondrial function and ROS production, and overlaid these changes with that of heart function and THF. Data from my study suggests that mitochondrial function and integrities could play a significant role in thermal stress tolerance and perhaps limit species distributions.
Biography: Fathima did her undergraduate and masters studies at McMaster University, Hamilton ON Canada in Dr. Chris Wood’s lab. She studied ‘the osmorespiratory compromise’ in hypoxia-tolerant and intolerant freshwater fish during her masters. Fathima is currently doing her PhD at the University of Auckland, in Dr. Anthony Hickey’s lab studying the effects of heat stress on heart and mitochondrial failure in marine fish from a climate change perspective.
New DNA techniques are being used to understand how coral reacted to the end of the last ice age in order to better predict how they will cope with current changes to the climate. James Cook Univer
A new study on the effects of climate change in five tropical countries has found fisheries are in more trouble than agriculture, and poor people are in the most danger. Distinguished Profess
James Cook University researchers have found brightly coloured fish are becoming increasingly rare as coral declines, with the phenomenon likely to get worse in the future. Christopher Hemingson, a
Researchers working with stakeholders in the Great Barrier Reef region have come up with ideas on how groups responsible for looking after the reef can operate more effectively when the next bleaching
Abstract: As marine species adapt to climate change, their heat tolerance will likely be under strong selection. Individual variation in heat tolerance and its heritability underpin the potential fo
Abstract: The Reef Ecology Lab in KAUST’s Red Sea Research Center explores many aspects of movement ecology of marine organisms, ranging from adult migrations to intergenerational larval dispersal
Abstract: Macroalgal meadows are a prominent, yet often maligned component of the tropical seascape. Our work at Ningaloo reef in WA demonstrate that canopy forming macroalgae provide habitat for ad
Abstract: Sharks are generally perceived as strong and fearsome animals. With fossils dating back at least 420 million years, sharks are not only majestic top predators but they also outlived dinosa
Abstract: Connectivity plays a vital role in many ecosystems through its effects on fundamental ecological and evolutionary processes. Its consequences for populations and metapopulations have been
Abstract: Evolution of many eukaryotic organisms is affected by interactions with microbes. Microbial symbioses can ultimately reflect host’s diet, habitat range, and even body shape. However, how
Abstract: The past few years have seen unprecedented coral bleaching and mortality on the Great Barrier Reef (GBR) but the consequences of this on biodiversity are not yet known. This talk will expl